Document-oriented NoSQL Databases: How many Joins will you have to implement?

One of the continuously debated items in context of NoSQL databases is the join operation. Let’s listen in a bit:

and there can be many more variations found on the topic of joins on various levels of technical depth.

So, do we need joins in context of NoSQL databases? Do we do joins implemented by NoSQL databases? Are joins outdated concepts that we can live without in context of NoSQL databases? In this blog I try to rationalize the overarching question in principle. Some fact finding first:

(Database) Data Models and Database Management Systems

Data models, like the relational model, the document-model, the hierarchical model, key-value model, graph model, object-oriented model, XML model, etc., are implementations of data structures in a given database management system. Data models define possible data types and their construction rules for more complex types.

For example, the implementation of a relational model might restrict values in tables to be scalar. Another implementation might allow a table as a value, supporting NF2 relations. One system might support the document-model strictly following the JSON model, while others add additional data types in addition to what JSON defines. Some systems do support the notion of references, other so not. Each database implements a data model in any variation it likes to.

Schemata and Database Management Systems

A schema is a particular extension of a domain model, implemented in context of a data model. For example, a domain model might be suppliers, parts and their relationship. This can be implemented in a relational model, a document model or a graph model or any other supported data model.

There is no ‘best’ way of definition a schema. For the same domain, different schemata can be defined depending on the skill of the creator, the knowledge of query access patterns, the amount of restrictions that should be supervised by the database management system and other factors.

For example, in a document model, suppliers, parts and their relationships can be modeled as three separate documents, or in two documents (suppliers and their relationship to parts), or one document – and there are many more variations possible, of course.

Joins and Database Management Systems

Some database management systems implement the join operation in their query interface, some do not. For example, Oracle, MySQL and FoundationDB implement joins, MongoDB, Oracle NoSQL and Aerospike do not. So joins are not necessarily restricted to the relational data model.

Joins and Data Access Paths

With the fact finding under our belt, how many joins will you have to implement? In principle, this is a function of the required data access based on a specific schema. Different schemata of the same domain will require a different number of joins.

Let’s look at a few examples in the supplier – parts domain.

Example 1: No join required

The documents are structured like this:

{"supplier": "superQuality",
 "parts":[
     {"part_name": "part_lowQual"}, 
     {"part_name": "part_hiQual"}]
}

The query: “find the names of all parts for a supplier” does not require a join as the data is already structured so that each supplier contains the set of all parts it supplies.

Example 2: One join required

The documents are structured like this:

{"supplier": "superQuality",
 "parts": [1, 2]
}
{"part_name": "part_lowQual", "part_id": 1}
{"part_name": "part_hiQual", "part_id": 2}

The query: “find the identifiers and names of all parts for a supplier” requires a join as a supplier only has the identifiers of the parts it ships, not their names.

Example 3: Two joins required

The documents are structured like this:

{"supplier": "superQuality", "supplier_id": "S_55"}
{"part_name": "part_lowQual", "part_id": 1}
{"part_name": "part_hiQual", "part_id": 2}
{"part_id": 1, "supplier_id": "S_55"}

The query: “find the identifiers and names of all parts for a supplier” requires two joins, one to find the objects for a supplier that relate the part identifier to the supplier identifier, and a second one to find the corresponding parts.

Analysis of Examples

The examples have shown empirically that the need for joins is not a function of the data model (document-oriented in this case), but a function of the data access, aka, the number of required data relationship traversals in context of a given schema. If the relationship to be traversed matches the way the data is structured as in Example 1, no join is necessary. As soon as the data is structured differently from the required traversal by the query, joins are necessary (Example 2 and 3).

So, as summary, it is fairly easy to avoid joins. If, and only if, you can structure your data (aka, build your schema) in such a way that it conforms structurally to the queries then you can avoid joins completely (Example 1). I am certain that there are special cases out there for which you can accomplish that, but in general, this is not possible. And, even if it is possible in production, as soon as analysts start analyzing the data sets, they will most likely query along different access paths.

Joins at Query Time vs. Joins at Insert/Update/Delete Time

Above examples clarified that joins are a function of the data access paths. Can joins at query time be avoided entirely by creating data access paths in a certain way?

Yes, it is possible, however, it is a basic trade-off between data query and data manipulation time: reducing the computational effort at run-time, and instead increasing it during insert / update / delete operations. In principle, joins at query time can be avoided if for each access path there is an equivalent data structure in place.

Example 4: Schema refactoring

The documents in this example look like:

{"supplier": "superQuality", "supplier_id": "S_55"}
{"part_name": "part_lowQual", "part_id": 1}
{"part_name": "part_hiQual", "part_id": 2}
{"part_id": 1, "supplier_id": "S_55"}
{"shipper": "fastShipper", "shipper_id": "SH_01"}
{"part_id": 2, "shipper_id": "SH_01"}

Supplier supply parts, however, shippers ship not any part, but only specific parts (maybe for safety reasons). There can be several queries against this document set:

  • Find all parts supplied by a supplier with a given name
  • Find all parts shipped by a shipper with a given name
  • Find all suppliers and shippers for a part with a given name

Each of these queries requires at least one join. The documents can be restructured easily to avoid joins altogether:

{"supplier": "superQuality", "supplier_id": "S_55",
 "parts": [
     {"part_name": "part_lowQual", "part_id": 1}
]}
{"shipper": "fastShipper", "shipper_id": "SH_01",
 "parts": [
     {"part_name": "part_hiQual", "part_id": 2}
]}
{"part_name": "part_lowQual", "part_id": 1,
 "suppliers": [
     {"supplier": "superQuality", "supplier_id": "S_55"}
 ], 
 "shippers": []}
{"part_name": "part_hiQual", "part_id": 2,
 "suppliers": [],
 "shippers": [
     {"shipper": "fastShipper", "shipper_id": "SH_01"}
]}

The idea is clear: structure the data in such a way that a query can be satisfied with a simple selection. And, the consequence is clear, too: data is duplicated, possibly many times. Which means that an insert, update or delete has to know all the locations where to modify the data and has to modify the data consistently (and ideally within a single transaction).

As a side note, this is the situation that normalization tries to address by ensuring that each data item is only once in the database.

Of course, data duplication will have an impact on the size requirements of main memory an disk space. While there is a change in algorithm complexity, there is also a change in the storage and memory size requirements.

Pre-Joining Data

Pre-joining data allows to avoid joins at query time at the cost of duplicating data at data management time. Alternatively expressed, the implementation of duplication at management time is the cost of avoiding normalization combined with query-time joins.

Is there a way to quantify the effort? In principle, there are as many duplications necessary as joins are to be avoided. This is a rough estimate as many joins are the same except for selection and/or projection specifications. If all joins are abstracted to their join criteria (omitting projection and selection), then this is roughly the amount of duplication required.

The article written by Sarah Mei clearly shows the trade-off between data duplication and joins: http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/. She clearly describes many of the issues in context of a specific use case.

“Wait a minute, I don’t have joins and it works anyway!”

But, where are the joins? NoSQL databases that do not implement the join operator in their query interface are in use and production.

If not expressed as query, joins are found either in the application system logic or the interface logic, depending on the design. Most likely these are nested-loop joins or hash-based joins (less likely) or a series of selections with the application logic combining the intermediary query results into the final result data set.

And they are not joins on the complete data set either, but usually have some selection criteria. So the application system logic roughly corresponds to the optimized operator tree of a database query sub-system and in all actuality there might be many joins implemented that way throughout the application logic.

The joins are in fact implemented, just not by using a join operator on the database interface, but inside the application logic. This means that the database cannot optimize the execution, plus there are several queries coming from the application logic putting load on the database system.

And this opens up yet another trade-off: data duplication vs. application logic complexity. If the data is structured in such a way that joins are avoided (at the cost of duplication), then the application logic complexity will be reduced also (from algorithms implementing joins to algorithms issuing queries with selections/projections).

Of course, while the application logic complexity is reduced, the data management logic complexity increased as it has to manage duplicate data consistently across the database.

Summary: Are joins required? Yes. Are joins implemented? Yes.

In my mind there is no question that joins are in general needed and actually implemented today, even if the database does not support a join operator directly and even if there are opinions that joins are not needed. I don’t really understand why there is a discussion about this in the first place as the need for a join is a function of the data schema, not the data model.

The fact that a relational database has the capability of joins does not mean you must use it. And the fact that a NoSQL database does not support joins at their query interface does not mean joins are not needed.

At the heart an architecture and engineering decision has to be made (implicitly or explicitly) of how many joins are implemented through data duplication and how many joins are implemented through algorithms in the application logic layer (if there is not join operator available at the database query interface).

It’s that easy.

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s